
Parallel Programming Concepts

MapReduce

Frank Feinbube

Source:

MapReduce: Simplied Data Processing on Large Clusters; Dean et. Al.

Examples for
Parallel Programming Support

ParProg | MapReduce | FF2011

2

MapReduce

■ Programming model + associated implementation

■ Processing and generating large data sets

■ Map:

□ key/value pair → intermediate key/value pairs

■ Reduce:

□ merge all intermediate values associated with the same

intermediate key

■ Origin: Lisp

ParProg | MapReduce | FF2011

3

Run-time system

Automated parallelization and distribution

■ Partitioning the input data

■ Scheduling the program‘s execution across a set of machines

■ Handling machine failures

■ Managing the required inter-machine communication

 Programmers do not have to think about parallel and distributed

system specifics

ParProg | MapReduce | FF2011

4

Programming Model

•Input:
key/value pairs

Map

•Intermediate:
set of key/value
pairs

•Grouped by
intermediate key

Reduce •Output:
key/value pairs

•Typically zero or
one output value
per intermediate
key

Output

ParProg | MapReduce | FF2011

5

Example: Wordcount

Counting the number of occurences of each word in a large collection

of documents:

ParProg | MapReduce | FF2011

6

map(String key, String value):

 for each word w in value:

 EmitIntermediate(w, "1");

reduce(String key, Iterator values):

 int result = 0;

 for each v in values:

 result += ParseInt(v);

 Emit(AsString(result));

Example: Wordcount

ParProg | MapReduce | FF2011

7

Types

Type Specification

Example

Work items: ID, binary content → character, number of occurences

ParProg | MapReduce | FF2011

8

map (k1,v1) → list(k2,v2)

reduce (k2,list(v2)) → list(v2)

map (long,byte[]) → list(char,int)

reduce (char,list(int)) → list(int)

More Examples

Example Map Reduce

Distributed
Grep

Emits a line, if it matches
the pattern

Emit unchanged

Count of URL
access
frequency

Processes logs of
requests: <URL,1>

Add values per URL:
<URL, total count>

Reverse web-
link graph

<target,source>, if link

is found in source

<target,list(source)>

Term-vector per
host (list of most
important words)

<hostname,term vector>

for each input document
Add all term vectors
together:
<hostname, term vector>

Inverted index Parse document, emit
<word, document ID>

Sort and emit
<word,list(document ID)>

Distributed sort Extract keys from records:
<key,record>

Emit unchanged (done by
ordering properties)

ParProg | MapReduce | FF2011

9

Google Implementation of MapReduce

■ Large cluster of standard PCs with local disks

□ x86, Ethernet: 100 Mbit/s to 1 Gbit/s, 2-4GB RAM, IDE

□ Custom global file system

◊ Replication for availability and reliability

□ Job scheduling system

◊ Set of tasks to set of machines

□ Machine failures are common (large number of machines)

ParProg | MapReduce | FF2011

10

Execution overview

ParProg | MapReduce | FF2011

11

Execution
overview

Execution overview

ParProg | MapReduce | FF2011

12

• Start up
program copies
on a cluster of
machines

• Split input files
into M pieces
typically 16-
64MB per piece

• Example:
• 200,000

Map Tasks
• 5,000

Reduce Tasks
• 2,000

Workers

Execution overview

ParProg | MapReduce | FF2011

13

• Program copies:
Workers
• M Map tasks
• R Reduce

tasks
• Special copy:

Master
• Assigns

tasks to idle
workers

Execution overview

ParProg | MapReduce | FF2011

14

• Worker is assigned a map
tasks
• read input split
• parse key/value pairs
• execute map function
• create intermediates

Execution overview

ParProg | MapReduce | FF2011

15

• Periodically buffered pairs
are written to local disk.
• Partitioned into R

regions by partitioning
function

• Locations passed to Master
• Master forwards

locations to reduce
workers

Execution overview

ParProg | MapReduce | FF2011

16

• Reduce worker
uses RPC to read
buffered data from
locations (local
disks of map
workers)

• Sort by
intermediate keys
→ grouping

Execution overview

ParProg | MapReduce | FF2011

17

• For each unique
intermediate key:
• execute reduce

function for key and
corresponding set of
intermediate values

• Output is appended to
final output file for this
reduce partition

Execution overview

ParProg | MapReduce | FF2011

18

• When all map and
reduce tasks have
been completed:
• Master wakes

up the user
program

Specific Google properties

■ Network bottleneck in Google cluster

□ Master tries to use locality information about the input data,

which is stored in the distributed file system

□ For large MapReduce tasks, most input data is read locally

■ Fault tolerance

□ Periodic heartbeat between master and workers

□ For a failed worker, re-execute completed and in-progress

map tasks (of this particular worker)

□ For a failed master, MapReduce is aborted → user has to re-

execute

□ Span backup tasks (cloned workers, same task) when

MapReduce is close to completion, to compensate faulty

(delaying) workers

ParProg | MapReduce | FF2011

19

Refinements

Refinement Description

Partitioning Function User functions for data partitioning are possible
(hash(key) mod R is default)

Ordering Guarantees Intermediate key/value pairs are ordered inc.

Combiner Function Partial merging of local data (like reduce)

Input and Output Types Some standard formats; user can specify more

Side-Effects Additional files have to be addressed by the user

Skipping Bad Records Ignore records with deterministic crashes
(configurable)

Local Execution Special MapReduce library for sequential execution

Status Information Master runs an internal HTTP server for diagnosis

Counters Count occurences of various events; user defined

ParProg | MapReduce | FF2011

20

